\(\int \tan ^2(e+f x) (a+b \tan ^2(e+f x))^{3/2} \, dx\) [314]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 172 \[ \int \tan ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=-\frac {(a-b)^{3/2} \arctan \left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f}+\frac {\left (3 a^2-12 a b+8 b^2\right ) \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{8 \sqrt {b} f}+\frac {(5 a-4 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{8 f}+\frac {b \tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)}}{4 f} \]

[Out]

-(a-b)^(3/2)*arctan((a-b)^(1/2)*tan(f*x+e)/(a+b*tan(f*x+e)^2)^(1/2))/f+1/8*(3*a^2-12*a*b+8*b^2)*arctanh(b^(1/2
)*tan(f*x+e)/(a+b*tan(f*x+e)^2)^(1/2))/f/b^(1/2)+1/8*(5*a-4*b)*(a+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e)/f+1/4*b*(a+
b*tan(f*x+e)^2)^(1/2)*tan(f*x+e)^3/f

Rubi [A] (verified)

Time = 0.32 (sec) , antiderivative size = 172, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3751, 488, 596, 537, 223, 212, 385, 209} \[ \int \tan ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\frac {\left (3 a^2-12 a b+8 b^2\right ) \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{8 \sqrt {b} f}-\frac {(a-b)^{3/2} \arctan \left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f}+\frac {(5 a-4 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{8 f}+\frac {b \tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)}}{4 f} \]

[In]

Int[Tan[e + f*x]^2*(a + b*Tan[e + f*x]^2)^(3/2),x]

[Out]

-(((a - b)^(3/2)*ArcTan[(Sqrt[a - b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]])/f) + ((3*a^2 - 12*a*b + 8*b^2)
*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]])/(8*Sqrt[b]*f) + ((5*a - 4*b)*Tan[e + f*x]*Sqrt[a
+ b*Tan[e + f*x]^2])/(8*f) + (b*Tan[e + f*x]^3*Sqrt[a + b*Tan[e + f*x]^2])/(4*f)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 488

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[d*(e*x)^
(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q - 1)/(b*e*(m + n*(p + q) + 1))), x] + Dist[1/(b*(m + n*(p + q) + 1
)), Int[(e*x)^m*(a + b*x^n)^p*(c + d*x^n)^(q - 2)*Simp[c*((c*b - a*d)*(m + 1) + c*b*n*(p + q)) + (d*(c*b - a*d
)*(m + 1) + d*n*(q - 1)*(b*c - a*d) + c*b*d*n*(p + q))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && N
eQ[b*c - a*d, 0] && IGtQ[n, 0] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 537

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 596

Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
 x_Symbol] :> Simp[f*g^(n - 1)*(g*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(b*d*(m + n*(p + q +
 1) + 1))), x] - Dist[g^n/(b*d*(m + n*(p + q + 1) + 1)), Int[(g*x)^(m - n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*
f*c*(m - n + 1) + (a*f*d*(m + n*q + 1) + b*(f*c*(m + n*p + 1) - e*d*(m + n*(p + q + 1) + 1)))*x^n, x], x], x]
/; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && IGtQ[n, 0] && GtQ[m, n - 1]

Rule 3751

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[c*(ff/f), Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2
 + ff^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {x^2 \left (a+b x^2\right )^{3/2}}{1+x^2} \, dx,x,\tan (e+f x)\right )}{f} \\ & = \frac {b \tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)}}{4 f}+\frac {\text {Subst}\left (\int \frac {x^2 \left (a (4 a-3 b)+(5 a-4 b) b x^2\right )}{\left (1+x^2\right ) \sqrt {a+b x^2}} \, dx,x,\tan (e+f x)\right )}{4 f} \\ & = \frac {(5 a-4 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{8 f}+\frac {b \tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)}}{4 f}-\frac {\text {Subst}\left (\int \frac {a (5 a-4 b) b-b \left (3 a^2-12 a b+8 b^2\right ) x^2}{\left (1+x^2\right ) \sqrt {a+b x^2}} \, dx,x,\tan (e+f x)\right )}{8 b f} \\ & = \frac {(5 a-4 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{8 f}+\frac {b \tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)}}{4 f}-\frac {(a-b)^2 \text {Subst}\left (\int \frac {1}{\left (1+x^2\right ) \sqrt {a+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}+\frac {\left (3 a^2-12 a b+8 b^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+b x^2}} \, dx,x,\tan (e+f x)\right )}{8 f} \\ & = \frac {(5 a-4 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{8 f}+\frac {b \tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)}}{4 f}-\frac {(a-b)^2 \text {Subst}\left (\int \frac {1}{1-(-a+b) x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f}+\frac {\left (3 a^2-12 a b+8 b^2\right ) \text {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{8 f} \\ & = -\frac {(a-b)^{3/2} \arctan \left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f}+\frac {\left (3 a^2-12 a b+8 b^2\right ) \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{8 \sqrt {b} f}+\frac {(5 a-4 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{8 f}+\frac {b \tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)}}{4 f} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.

Time = 6.31 (sec) , antiderivative size = 771, normalized size of antiderivative = 4.48 \[ \int \tan ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\frac {\frac {b \left (a^2+4 a b-4 b^2\right ) \sqrt {\frac {a+b+(a-b) \cos (2 (e+f x))}{1+\cos (2 (e+f x))}} \sqrt {-\frac {a \cot ^2(e+f x)}{b}} \sqrt {-\frac {a (1+\cos (2 (e+f x))) \csc ^2(e+f x)}{b}} \sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}} \csc (2 (e+f x)) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}}}{\sqrt {2}}\right ),1\right ) \sin ^4(e+f x)}{a (a+b+(a-b) \cos (2 (e+f x)))}+\frac {4 b \left (4 a^2-8 a b+4 b^2\right ) \sqrt {1+\cos (2 (e+f x))} \sqrt {\frac {a+b+(a-b) \cos (2 (e+f x))}{1+\cos (2 (e+f x))}} \left (\frac {\sqrt {-\frac {a \cot ^2(e+f x)}{b}} \sqrt {-\frac {a (1+\cos (2 (e+f x))) \csc ^2(e+f x)}{b}} \sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}} \csc (2 (e+f x)) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}}}{\sqrt {2}}\right ),1\right ) \sin ^4(e+f x)}{4 a \sqrt {1+\cos (2 (e+f x))} \sqrt {a+b+(a-b) \cos (2 (e+f x))}}-\frac {\sqrt {-\frac {a \cot ^2(e+f x)}{b}} \sqrt {-\frac {a (1+\cos (2 (e+f x))) \csc ^2(e+f x)}{b}} \sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}} \csc (2 (e+f x)) \operatorname {EllipticPi}\left (-\frac {b}{a-b},\arcsin \left (\frac {\sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}}}{\sqrt {2}}\right ),1\right ) \sin ^4(e+f x)}{2 (a-b) \sqrt {1+\cos (2 (e+f x))} \sqrt {a+b+(a-b) \cos (2 (e+f x))}}\right )}{\sqrt {a+b+(a-b) \cos (2 (e+f x))}}}{4 f}+\frac {\sqrt {\frac {a+b+a \cos (2 (e+f x))-b \cos (2 (e+f x))}{1+\cos (2 (e+f x))}} \left (\frac {1}{8} \sec (e+f x) (5 a \sin (e+f x)-6 b \sin (e+f x))+\frac {1}{4} b \sec ^2(e+f x) \tan (e+f x)\right )}{f} \]

[In]

Integrate[Tan[e + f*x]^2*(a + b*Tan[e + f*x]^2)^(3/2),x]

[Out]

((b*(a^2 + 4*a*b - 4*b^2)*Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])/(1 + Cos[2*(e + f*x)])]*Sqrt[-((a*Cot[e + f*
x]^2)/b)]*Sqrt[-((a*(1 + Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b)]*Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e
+ f*x]^2)/b]*Csc[2*(e + f*x)]*EllipticF[ArcSin[Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]/Sqr
t[2]], 1]*Sin[e + f*x]^4)/(a*(a + b + (a - b)*Cos[2*(e + f*x)])) + (4*b*(4*a^2 - 8*a*b + 4*b^2)*Sqrt[1 + Cos[2
*(e + f*x)]]*Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])/(1 + Cos[2*(e + f*x)])]*((Sqrt[-((a*Cot[e + f*x]^2)/b)]*S
qrt[-((a*(1 + Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b)]*Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b
]*Csc[2*(e + f*x)]*EllipticF[ArcSin[Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]/Sqrt[2]], 1]*S
in[e + f*x]^4)/(4*a*Sqrt[1 + Cos[2*(e + f*x)]]*Sqrt[a + b + (a - b)*Cos[2*(e + f*x)]]) - (Sqrt[-((a*Cot[e + f*
x]^2)/b)]*Sqrt[-((a*(1 + Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b)]*Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e
+ f*x]^2)/b]*Csc[2*(e + f*x)]*EllipticPi[-(b/(a - b)), ArcSin[Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e +
 f*x]^2)/b]/Sqrt[2]], 1]*Sin[e + f*x]^4)/(2*(a - b)*Sqrt[1 + Cos[2*(e + f*x)]]*Sqrt[a + b + (a - b)*Cos[2*(e +
 f*x)]])))/Sqrt[a + b + (a - b)*Cos[2*(e + f*x)]])/(4*f) + (Sqrt[(a + b + a*Cos[2*(e + f*x)] - b*Cos[2*(e + f*
x)])/(1 + Cos[2*(e + f*x)])]*((Sec[e + f*x]*(5*a*Sin[e + f*x] - 6*b*Sin[e + f*x]))/8 + (b*Sec[e + f*x]^2*Tan[e
 + f*x])/4))/f

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(385\) vs. \(2(150)=300\).

Time = 0.07 (sec) , antiderivative size = 386, normalized size of antiderivative = 2.24

method result size
derivativedivides \(\frac {\tan \left (f x +e \right ) \left (a +b \tan \left (f x +e \right )^{2}\right )^{\frac {3}{2}}}{4 f}+\frac {3 a \tan \left (f x +e \right ) \sqrt {a +b \tan \left (f x +e \right )^{2}}}{8 f}+\frac {3 a^{2} \ln \left (\sqrt {b}\, \tan \left (f x +e \right )+\sqrt {a +b \tan \left (f x +e \right )^{2}}\right )}{8 f \sqrt {b}}+\frac {b^{\frac {3}{2}} \ln \left (\sqrt {b}\, \tan \left (f x +e \right )+\sqrt {a +b \tan \left (f x +e \right )^{2}}\right )}{f}-\frac {b \sqrt {a +b \tan \left (f x +e \right )^{2}}\, \tan \left (f x +e \right )}{2 f}-\frac {3 \sqrt {b}\, a \ln \left (\sqrt {b}\, \tan \left (f x +e \right )+\sqrt {a +b \tan \left (f x +e \right )^{2}}\right )}{2 f}-\frac {\sqrt {b^{4} \left (a -b \right )}\, \arctan \left (\frac {b^{2} \left (a -b \right ) \tan \left (f x +e \right )}{\sqrt {b^{4} \left (a -b \right )}\, \sqrt {a +b \tan \left (f x +e \right )^{2}}}\right )}{f \left (a -b \right )}+\frac {2 a \sqrt {b^{4} \left (a -b \right )}\, \arctan \left (\frac {b^{2} \left (a -b \right ) \tan \left (f x +e \right )}{\sqrt {b^{4} \left (a -b \right )}\, \sqrt {a +b \tan \left (f x +e \right )^{2}}}\right )}{f b \left (a -b \right )}-\frac {a^{2} \sqrt {b^{4} \left (a -b \right )}\, \arctan \left (\frac {b^{2} \left (a -b \right ) \tan \left (f x +e \right )}{\sqrt {b^{4} \left (a -b \right )}\, \sqrt {a +b \tan \left (f x +e \right )^{2}}}\right )}{f \,b^{2} \left (a -b \right )}\) \(386\)
default \(\frac {\tan \left (f x +e \right ) \left (a +b \tan \left (f x +e \right )^{2}\right )^{\frac {3}{2}}}{4 f}+\frac {3 a \tan \left (f x +e \right ) \sqrt {a +b \tan \left (f x +e \right )^{2}}}{8 f}+\frac {3 a^{2} \ln \left (\sqrt {b}\, \tan \left (f x +e \right )+\sqrt {a +b \tan \left (f x +e \right )^{2}}\right )}{8 f \sqrt {b}}+\frac {b^{\frac {3}{2}} \ln \left (\sqrt {b}\, \tan \left (f x +e \right )+\sqrt {a +b \tan \left (f x +e \right )^{2}}\right )}{f}-\frac {b \sqrt {a +b \tan \left (f x +e \right )^{2}}\, \tan \left (f x +e \right )}{2 f}-\frac {3 \sqrt {b}\, a \ln \left (\sqrt {b}\, \tan \left (f x +e \right )+\sqrt {a +b \tan \left (f x +e \right )^{2}}\right )}{2 f}-\frac {\sqrt {b^{4} \left (a -b \right )}\, \arctan \left (\frac {b^{2} \left (a -b \right ) \tan \left (f x +e \right )}{\sqrt {b^{4} \left (a -b \right )}\, \sqrt {a +b \tan \left (f x +e \right )^{2}}}\right )}{f \left (a -b \right )}+\frac {2 a \sqrt {b^{4} \left (a -b \right )}\, \arctan \left (\frac {b^{2} \left (a -b \right ) \tan \left (f x +e \right )}{\sqrt {b^{4} \left (a -b \right )}\, \sqrt {a +b \tan \left (f x +e \right )^{2}}}\right )}{f b \left (a -b \right )}-\frac {a^{2} \sqrt {b^{4} \left (a -b \right )}\, \arctan \left (\frac {b^{2} \left (a -b \right ) \tan \left (f x +e \right )}{\sqrt {b^{4} \left (a -b \right )}\, \sqrt {a +b \tan \left (f x +e \right )^{2}}}\right )}{f \,b^{2} \left (a -b \right )}\) \(386\)

[In]

int(tan(f*x+e)^2*(a+b*tan(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/4/f*tan(f*x+e)*(a+b*tan(f*x+e)^2)^(3/2)+3/8/f*a*tan(f*x+e)*(a+b*tan(f*x+e)^2)^(1/2)+3/8/f*a^2/b^(1/2)*ln(b^(
1/2)*tan(f*x+e)+(a+b*tan(f*x+e)^2)^(1/2))+1/f*b^(3/2)*ln(b^(1/2)*tan(f*x+e)+(a+b*tan(f*x+e)^2)^(1/2))-1/2*b*(a
+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e)/f-3/2/f*b^(1/2)*a*ln(b^(1/2)*tan(f*x+e)+(a+b*tan(f*x+e)^2)^(1/2))-1/f*(b^4*(
a-b))^(1/2)/(a-b)*arctan(b^2*(a-b)/(b^4*(a-b))^(1/2)/(a+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e))+2/f*a/b*(b^4*(a-b))^
(1/2)/(a-b)*arctan(b^2*(a-b)/(b^4*(a-b))^(1/2)/(a+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e))-1/f*a^2*(b^4*(a-b))^(1/2)/
b^2/(a-b)*arctan(b^2*(a-b)/(b^4*(a-b))^(1/2)/(a+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e))

Fricas [A] (verification not implemented)

none

Time = 0.75 (sec) , antiderivative size = 708, normalized size of antiderivative = 4.12 \[ \int \tan ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\left [\frac {{\left (3 \, a^{2} - 12 \, a b + 8 \, b^{2}\right )} \sqrt {b} \log \left (2 \, b \tan \left (f x + e\right )^{2} + 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {b} \tan \left (f x + e\right ) + a\right ) - 8 \, {\left (a b - b^{2}\right )} \sqrt {-a + b} \log \left (-\frac {{\left (a - 2 \, b\right )} \tan \left (f x + e\right )^{2} + 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-a + b} \tan \left (f x + e\right ) - a}{\tan \left (f x + e\right )^{2} + 1}\right ) + 2 \, {\left (2 \, b^{2} \tan \left (f x + e\right )^{3} + {\left (5 \, a b - 4 \, b^{2}\right )} \tan \left (f x + e\right )\right )} \sqrt {b \tan \left (f x + e\right )^{2} + a}}{16 \, b f}, -\frac {{\left (3 \, a^{2} - 12 \, a b + 8 \, b^{2}\right )} \sqrt {-b} \arctan \left (\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-b}}{b \tan \left (f x + e\right )}\right ) + 4 \, {\left (a b - b^{2}\right )} \sqrt {-a + b} \log \left (-\frac {{\left (a - 2 \, b\right )} \tan \left (f x + e\right )^{2} + 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-a + b} \tan \left (f x + e\right ) - a}{\tan \left (f x + e\right )^{2} + 1}\right ) - {\left (2 \, b^{2} \tan \left (f x + e\right )^{3} + {\left (5 \, a b - 4 \, b^{2}\right )} \tan \left (f x + e\right )\right )} \sqrt {b \tan \left (f x + e\right )^{2} + a}}{8 \, b f}, -\frac {16 \, {\left (a b - b^{2}\right )} \sqrt {a - b} \arctan \left (-\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a}}{\sqrt {a - b} \tan \left (f x + e\right )}\right ) - {\left (3 \, a^{2} - 12 \, a b + 8 \, b^{2}\right )} \sqrt {b} \log \left (2 \, b \tan \left (f x + e\right )^{2} + 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {b} \tan \left (f x + e\right ) + a\right ) - 2 \, {\left (2 \, b^{2} \tan \left (f x + e\right )^{3} + {\left (5 \, a b - 4 \, b^{2}\right )} \tan \left (f x + e\right )\right )} \sqrt {b \tan \left (f x + e\right )^{2} + a}}{16 \, b f}, -\frac {8 \, {\left (a b - b^{2}\right )} \sqrt {a - b} \arctan \left (-\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a}}{\sqrt {a - b} \tan \left (f x + e\right )}\right ) + {\left (3 \, a^{2} - 12 \, a b + 8 \, b^{2}\right )} \sqrt {-b} \arctan \left (\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-b}}{b \tan \left (f x + e\right )}\right ) - {\left (2 \, b^{2} \tan \left (f x + e\right )^{3} + {\left (5 \, a b - 4 \, b^{2}\right )} \tan \left (f x + e\right )\right )} \sqrt {b \tan \left (f x + e\right )^{2} + a}}{8 \, b f}\right ] \]

[In]

integrate(tan(f*x+e)^2*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

[1/16*((3*a^2 - 12*a*b + 8*b^2)*sqrt(b)*log(2*b*tan(f*x + e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(b)*tan(f*x
+ e) + a) - 8*(a*b - b^2)*sqrt(-a + b)*log(-((a - 2*b)*tan(f*x + e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a +
 b)*tan(f*x + e) - a)/(tan(f*x + e)^2 + 1)) + 2*(2*b^2*tan(f*x + e)^3 + (5*a*b - 4*b^2)*tan(f*x + e))*sqrt(b*t
an(f*x + e)^2 + a))/(b*f), -1/8*((3*a^2 - 12*a*b + 8*b^2)*sqrt(-b)*arctan(sqrt(b*tan(f*x + e)^2 + a)*sqrt(-b)/
(b*tan(f*x + e))) + 4*(a*b - b^2)*sqrt(-a + b)*log(-((a - 2*b)*tan(f*x + e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a)*s
qrt(-a + b)*tan(f*x + e) - a)/(tan(f*x + e)^2 + 1)) - (2*b^2*tan(f*x + e)^3 + (5*a*b - 4*b^2)*tan(f*x + e))*sq
rt(b*tan(f*x + e)^2 + a))/(b*f), -1/16*(16*(a*b - b^2)*sqrt(a - b)*arctan(-sqrt(b*tan(f*x + e)^2 + a)/(sqrt(a
- b)*tan(f*x + e))) - (3*a^2 - 12*a*b + 8*b^2)*sqrt(b)*log(2*b*tan(f*x + e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a)*s
qrt(b)*tan(f*x + e) + a) - 2*(2*b^2*tan(f*x + e)^3 + (5*a*b - 4*b^2)*tan(f*x + e))*sqrt(b*tan(f*x + e)^2 + a))
/(b*f), -1/8*(8*(a*b - b^2)*sqrt(a - b)*arctan(-sqrt(b*tan(f*x + e)^2 + a)/(sqrt(a - b)*tan(f*x + e))) + (3*a^
2 - 12*a*b + 8*b^2)*sqrt(-b)*arctan(sqrt(b*tan(f*x + e)^2 + a)*sqrt(-b)/(b*tan(f*x + e))) - (2*b^2*tan(f*x + e
)^3 + (5*a*b - 4*b^2)*tan(f*x + e))*sqrt(b*tan(f*x + e)^2 + a))/(b*f)]

Sympy [F]

\[ \int \tan ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\int \left (a + b \tan ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}} \tan ^{2}{\left (e + f x \right )}\, dx \]

[In]

integrate(tan(f*x+e)**2*(a+b*tan(f*x+e)**2)**(3/2),x)

[Out]

Integral((a + b*tan(e + f*x)**2)**(3/2)*tan(e + f*x)**2, x)

Maxima [F]

\[ \int \tan ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\int { {\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \tan \left (f x + e\right )^{2} \,d x } \]

[In]

integrate(tan(f*x+e)^2*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*tan(f*x + e)^2 + a)^(3/2)*tan(f*x + e)^2, x)

Giac [F(-1)]

Timed out. \[ \int \tan ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\text {Timed out} \]

[In]

integrate(tan(f*x+e)^2*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \tan ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\int {\mathrm {tan}\left (e+f\,x\right )}^2\,{\left (b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a\right )}^{3/2} \,d x \]

[In]

int(tan(e + f*x)^2*(a + b*tan(e + f*x)^2)^(3/2),x)

[Out]

int(tan(e + f*x)^2*(a + b*tan(e + f*x)^2)^(3/2), x)